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Isaac Newton’s Philosophiæ Naturalis Principia Mathematica is usually remembered for its 

theoretical advances in mechanics and its empirical argument for universal gravitation. This 

argument, in turn, is taken to rest on Newton’s empirical predictions of astronomical 

phenomena in the Principia’s third book. For all its merits, this focus on astronomy has led 

many historians, physicists, and philosophers to overlook an equally important empirical 

problem in the Principia : deriving the earth’s figure and the variation of gravity on its surface. 

In what follows, I hope to rectify this situation. After presenting a new reconstruction of 

Newton’s often overlooked derivation of the earth’s figure and surface gravity, I illustrate 

why these results were of primary importance to his argument for universal gravitation. This 

offers the first complete reconstruction of Newton’s derivation and its methodological 

significance.1   

 

The Derivation 

Newton began his work on the derivation of planetary figures after learning about an 

experimental result obtained by French physicist Jean Richer. Richer had traveled to Cayenne 

in 1671 and conducted a series of experiments with a pendulum clock. Originally calibrated 

to Parisian astronomical time (48°40’ latitude), Richer found the clock to lose an average of 2 

½ minutes per day relative to astronomical time in Cayenne (5° latitude) . This result was 

suprising for contemporaries but had an intuitive explanation in terms of the theory of 

 
1 So far, the only published  discussions of the work’s methodological importance can be found in Schliesser and 
Smith 2000 and Smith 2014, who do not include reconstructions of Newton’s derivation. Todhunter 1873 and 
Greenberg 1996 gives a discussion of the derivation in plain English, without any methodological 
contextualisation. Chandrasekhar 2003 also gives a reconstruction of the derivation in modern algebra, which 
contains some minor but quite confusing mistakes and ambiguities. 



centrifugal motion recently developed by Christian Huygens. Given that the centrifugal effect is 

strongest at the equator, one could expect a reduction in net effective surface gravity as one moves from 

Paris to Cayenne (Huygens 1690, 146). While Newton accepted Huygens’s theory, he realised 

that this explanation has an unintended empirical consequence. If the earth is a sphere but its 

centrifugal effect is strongest at the equator, one would not only observe surface gravity variations, but 

the ocean would bulge up at the equator – a proposition that Newton considered absurd. To avoid 

the unwarranted implication, he proposed that the solid earth had behaved approximately like a 

malleable fluid throughout its formation, gradually bulging up at the equator in response to 

the centrifugal effect. Hence, Newton proposed to model planets as rotating fluids in 

equilibrium, where the shape of a planet must be stable under the joint action of the forces 

resulting from the rotational motion and gravitational attraction between the constituent 

particles of a rotating fluid (C&W, 470). 

Newton’s first step in deriving the earth’s empirical parameters from this theory was to 

calculate the ratio between the strength of gravitational acceleration and centrifugal force at 

the equator (1/290.8) based on the period of the earth’s diurnal rotation and estimates of its 

equatorial diameter. Newton knew about the length of two meridional arcs that could be used 

for such a calculation, measured by Richard Norwood in England and Jean Picard in France. 

The second empirical input Newton needed was the magnitude of gravitational acceleration 

at the equator. He calculated this value by extrapolating from Richer’s pendulum 

measurements at 48°50’ latitude to the corresponding value at the equator of a homogenous 

sphere (C&W, 826) 

Equipped with an empirical ratio between centrifugal effect and equatorial surface gravity, 

Newton faced a tough problem: How could one express mathematically what it means for a 

rotating fluid whose constituents attract according to a certain law of gravity to be in a state 

of equilibrium? Newton by employing up with an ingenious thought experiment, which he 

had originally developed in his 1685 Liber Secundus manuscript (Newton 1685, prop. 50): a 

rotating body is in a state of hydrostatic equilibrium if the weight of water in two channels X 

and Y, where X connects the equator to the earth’s center and Y the earth’s center to one of 

the poles, is identical. Since X is affected by the centrifugal effect, this condition is fulfilled if 

the overall centrifugal “pull” on equatorial particles is compensated by a change to the figure. 

In other words, the equatorial regions need to “bulge up” and the poles “flatten” to such an 

extent that the total weight of X and Y (i.e., net quantity of gravitational attraction towards 

the center) is the same. This stipulative attempt to define hydrostatic equilibrium later came 

to be known as the “principle of balanced columns” (Todhunter 1873, 1:14).  



 

 
Fig. 1: Newton’s illustration of hydrostatic equilibrium through the “principle of 

balanced columns” in the first edition of the Principia. Taken from: Isaac Newton, 
Philosophiæ Naturalis Principia Mathematica, London 1687, 422. 

 

Newton then used his theory of gravitational attraction to derive the figure that a rotating 

body would need to acquire to balance the net attraction on the two columns. More precisely, 

he determined the ratio between equatorial diameter and polar axis that fulfils this 

equilibrium condition. Newton begins his derivation by determining the ratio between polar 

and equatorial surface gravity for the simple case of a non-rotating oblate figure, with the 

axis-diameter ratio of 100/101, arriving at 501/500.2 If this result is multiplied by the length 

of the two fluid columns (100/101), we obtain the ratio of 501/505 between the net 

gravitational forces acting on the polar and equatorial fluid columns. Therefore, the net 

gravitational force acting on the equatorial fluid column is greater than the corresponding 

net force acting on the polar fluid column by a magnitude of 4/505. It follows that if a spheroid 

with the dimensions of 100/101 would be rotating, the ratio between equatorial surface gravity and 

centrifugal force must be 4/505 for it to be in a state of hydrostatic equilibrium. Since Newton’s 

premise was that the earth de facto is in a state of hydrostatic equilibrium, he then extended 

this thought experiment from the simple case to the empirically parameters of the physical 

earth. For his previously determined 1/290.1 ratio between equatorial surface gravity and 

centrifugal force, he calculated a corresponding polar axis and equatorial diameter ratio of 

 
2 Newton’s derivation for the attraction of perfectly spherical and spheroidal compound bodies is given in Book 
1, Prop. 91, coroll. 1 and 2 and reconstructed in its original notation in the appendix. 



689 to 692. He concludes that the earth, modeled as a homogenous spheroid that rotates with uniform 

angular velocity, must have polar and equatorial axes with a length ratio of 689 to 692 to be in a state 

of hydrostatic equilibrium.  

Corresponding to the resulting latitudinal variation in the distances between points on the 

earth's surface and its center, he then calculated the effective surface gravity – indicated by 

the length of the seconds-pendulum – to vary as the square of the sine of the latitude (C&W, 

473). By deriving a general latitudinal variation, he is no longer just concerned with the length 

ratio between the equatorial diameter and polar axis but explicitly committed to a model of 

the earth’s overall figure. Namely, that of an oblate ellipsoid with an ellipticity of 3/692 

(~1/230.7). Using the measured pendulum length at 48°40’ astronomical latitude in Paris as 

a reference point (3ft 17/24 inches), he predicted that the pendulum has to be shortened by 

81/1000 and 89/1000 inches in Gorée (14°15’) and Cayenne (5°) to preserve its period – two 

reasonably close but still noticeably inaccurate approximations of the existing measurements 

in those locations (100/1000 and 125/1000 inches). 

 

The Earth’s Figure and the Argument for Universal Gravitation  

So far, I have demonstrated that Newton invested a considerable amount of effort in deriving 

the earth’s figure and latitudinal variation in surface gravity. Besides a novel definition for 

the hydrostatic equilibrium of rotating bodies, these results presumed Newton’s theory of 

gravitational attraction. His empirical predictions only hold if the mutual attraction between 

all constituent particles of the earth is assumed throughout the derivation. Hence, these 

predictions offered a test for the most fundamental and novel assumption in Newtons theory 

of gravitation. Namely, that gravity acts “universally” between all particles of matter. In fact, 

as George Smith has shown, the geodetic predictions offer the only such test in the Principia 

(Schliesser and Smith 2000, 5). It is clear from archival sources that Newton was sharply 

aware of this situation. Not only did his editor Roger Cotes keep pushing him to revise the 

geodetic results in light of new data (Cotes to Newton 1712, 234-235), but Newton explicitly 

revised his value for the earth’s ellipticity from 689/692 to 1/230 and added a table with 

detailed predictions in the second edition of the Principia (C&W, 472). These predictions 

concerned the lengths of an isochronous pendulum with a period of one second at different 

latitudes (indicating surface gravity) and the length of 1° of meridian at different latitudes 

(indicating surface curvature). As is evident from his scribbles during the editing process, 

Newton again revised these predictions in the editorial process for the third edition (Fig. 2). 



 
Fig. 2: Newton’s repeatedly revised predictions of the pendulum (column 1) and 

arc lengths (column 2-4) at different latitudes; draft from between the second and 

third edition. Cambridge University Library, Newton Manuscripts, MS Add 3965, 

450r. 

The obvious question to ask at this point is whether Newton’s geodetic predictions could live 

up to their enormous importance in the argument for universal gravitation. On a naïve 

reading, the answer is “no”. When the third and last edition of the Principia was published, 

Newton had access to one measurement of the latitudinal variation in the length of 1° of 

meridian and five pendulum measurements of the variation of surface gravity with latitude. 

The arc measurement entirely disagreed with Newton’s predictions, seemingly indicating 

that the earth is an oblong – rather than oblate – spheroid. Out of several existing pendulum 

measurements, only Jean Richer’s mentioned above seemed broadly admissible, still markedly 

disagreeing with Newton’s prediction. The situation is similarly dire when we turn to current 

data, as satellite measurements give the earth’s ellipticity as 1/298.257223563 (WGS 84). 

Taking such a pessimistic view on the fruits of Newton’s geodetic work misses some of the 

most important nuances of the Principia. As George Smith has forcefully argued, Newton’s 

Principia does not only propose theoretical predictions, but a distinctive methodology of 

testing through approximation. Newton took for granted that his initial predictions are likely to 

be inaccurate because he relied on several uncertain background hypotheses when deriving 



them. The success of the universal theory of gravitation, then, was never intended to be 

measured by the immediate agreement between initial predictions and measurements. Rather, 

Newton intended his theory to be tested based on how well it could guide consecutive 

adjustments of background hypotheses that lead to a convergence among measurements (Smith 2014). 

Hence, Newton did not aim to establish the ellipticity and latitudinal surface gravity variation 

of the earth once and for all. Rather, they constituted first approximations, which should allow 

for empirical adjustments of the uncertain assumptions in the derivation of the earth’s 

equilibrium figure. The most obvious idealization in that derivation was the assumption that 

the rotating earth has a homogenous density. Indeed, it is precisely this assumption that 

Newton modified in the first edition of the Principia, reacting to the disagreement between 

his predictions and Richer’s measurements in Cayenne and Gorée. If the earth is denser at its 

center, he insinuated, the ellipticity of the earth’s equilibrium figure and, ipso facto, its surface 

gravity variation will differ: 

These differences are a little greater than the differences 
81

1000
 and 

89

1000
 which resulted from 

the above computation, and therefore (if one can have enough confidence in these rough 

observations) the earth will be somewhat higher at the equator than according to the above 

calculation and denser at the center than in mines near the surface (C&W, 473, my italics)3 

This conclusion passes the torch to future researchers, inviting them to hypothesize different 

density distributions that accord with these initial measurement outcomes, which can then be 

further investigated based on increasingly precise empirical measurements (C&W, 473).  

In line with this diachronic methodology outlined by Newton, geodesists eventually produced 

convergent measurements of the earth’s ellipticity based on latitudinal surface gravity and 

curvature variations. For about two and a half centuries, they used the theories of gravitation 

and hydrostatic equilibrium to model the dependencies between the earth’s figure, motion, 

and constitution, and gradually revised these parameters in the light of new measurements. 

By 1909, all major ellipticity measurements converged within 297.6±0.9, implying an 

inwardly increasing density (Ohnesorge forthcoming). By 1926, Viennese astronomer Samuel 

Oppenheim could conclude that these results offered overwhelming evidence for Newtonian 

 
3 Newton turned out wrong about the exact relationship between the earth’s surface gravity, equilibirium figure, 
and the earth’s interior density distribution. An increase in density towards the centre would imply that the 
earth’s ellipticity and surface gravity variation decrease. This was first pointed out by Alexis Clairaut (1738), who 
subsequently proved it in his 1743 magnum opus Theorie de la figure de la terre. 



gravity at a terrestrial scale, vindicating both Newton’s theory of gravitation and his 

diachronic methodology (Sommerfeld and Oppenheim 1926, 122–23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix: Newton’s derivation of the ratio between the gravitational accelerations at 
the equator and the pole of an oblate spheroid4 

 

Newton argued that gravitational attraction varies as the inverse square of the distance and 

proportionally to the product of the masses between point particles with a certain mass: 

𝐹𝑔 ∝
𝑀1𝑀2

𝑟2
 

Where F is the gravitational force, M1 and M2 are the masses of two attracting point particles, 

and r is the distance between them.  

When deriving the earth’s figure, Newton needed to relate this exceedingly abstract equation 

to the ratio between the gravitational acceleration at the equator and poles of the physical 

earth. As we saw in section 3, this problem first needed to be solved for the simpler case of a 

non-rotating homogeneous oblate spheroid, from which Newton then derived the figure and 

surface gravity of a rotating homogeneous oblate spheroid (representing the earth). One 

quickly realises the main difficulty in this endeavour: a spheroid is not a point particle but 

composed of several particles, requiring a method to calculate their net attraction. In a first 

approximation, the spheroid may be treated as a homogenous sphere HS around a centre S. 

Newton had already proved earlier in book 1 that (i) the attraction outside of a homogenous 

sphere varies as if its mass is concentrated at one point at its centre and (ii) attraction inside 

a homogenous sphere varies linearly with distance from the centre. 

Treating the earth as a sphere, the problem then becomes how derive the quantity of net 

attractive force that HS exerts on an external point particle P. Assuming that mass 

difference between HS and P is sufficiently great, the second law of motion implies that this 

quantity is directly proportional to the gravitational acceleration on the surface of HS. 

Newton approaches this problem by calculating the attraction of a point particle E on the 

surface of HS and a two-dimensional zone Eq inside of the sphere (prop. 79), before he 

 
4 This reconstruction incorporates elements from George Smith’s summary of Newton’s derivation of the 
attraction of spheres, as given in the lecture series “Newton’s Principia” at Tufts University in the academic year 
2020/21. The only existing reconstruction of the other parts of this derivation (attraction of spheroid, 
application to the earth’s figure) is the algebraic version given by Chandrasekhar (2003). Note that 
Chandrasekhar’s treatment is not only in a different notation but contains several mistakes. At one point, he 
argues that Newton had derived an ellipticity of 1/289 for the earth, while he had in fact derived an ellipticity 
of 1/230 (as noted in: Smith 1996). More consequentially, however, he repeatedly claims that Newton had used 
a model spheroid with an ellipticity of 1/100 in his derivation, while he is in fact using a model with an ellipticity 
of 1/101. This is particularly confusing since this value would have led Newton to a different conclusion. In fact, 
Newton does not even use the quantity of ellipticity in props. 19 and 20 but only refers to the length ratio 
between equatorial diameter and polar axis. In what follows, I stick closer to the original derivation and denote 
the dimensions of the different spheroids in terms of the ratio between their equatorial diameter and polar axis. 



generalises the expression to account for the attraction for different three-dimensional shells, 

whose compounded attraction gives the net attraction of HS (prop. 80). 

 

Newton begins by calculating the relationship between the gravitational attraction of a point 

particle E and the zone Eq. For this, he assumes that the distance between the arcs EF and ef 

vanishes and exploits the resulting co-variation in the length of different triangle sides in the 

above figure. The net attraction of Eq on P varies with the attraction of a point particle at E 

and several sides in the above figure as follows:  

𝐹𝑃→E𝑞 ∝ 𝐹𝑃→𝐸(𝑃𝐸 × 𝐷𝑑)
𝑃𝐷

𝑃𝐸
 

which can be further simplified as: 

𝐹𝑃→E𝑞 ∝ 𝐹𝑃→𝐸(𝑃𝐷 × 𝐷𝑑) 

From this Newton could calculate the attractive force of the surface of the shell FE as follows:  

𝐹𝑃→𝑆ℎ𝑒𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ∝ 𝐹𝑃→𝐸(
𝑃𝐹2

2
−

𝑃𝐷2

2
) ∝ 𝐹𝑃→𝐸𝐷𝐸² 

Generalising further, he arrived at an expression for the attraction of the volume of that shell  

𝐹𝑃→𝑆ℎ𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 ∝ 𝐹𝑃→𝐸 × 𝐷𝐸2 × 𝐹𝑓 

Where Ff can be defined in terms of already known ratios as follows: 

𝐹𝑓 =
𝑃𝑆

𝑃𝐷
𝐷𝑑 



Now we know how to determine the attractive force that a spherical shell exerts on P based 

only the attractive force that a point particle at E exerts on P. The next task is to calculate 

the attraction of HS, which is taken to be constituted by a large number of such concentric 

shells with vanishings widths. Newton begins by representing the magnitude of attraction of 

one such shell by the line DN, where DN is drawn perpendicular to AB and its lengths varies 

as follows: 

𝐷𝑁 ∝ 𝐹𝑃→𝐸𝐷𝐸2
𝐷𝐸² × 𝑃𝑆

𝑃𝐸
 

 

The different shells can then be determined by integrating the curve ABN passing through 

the endpoints of multiple of such lines, which are each drawn analogously to DN: 

𝐹𝑃→𝐻𝑆 ∝ ∫ 𝐷𝑁 × 𝐷𝑋
𝐵

𝐴

= 𝑎𝑟𝑒𝑎 (𝐴𝐵𝑁) 

So far, the earth has been treated as a sphere. The next step consisted in extending the 

previous results to the case of a homogenous oblate spheroid. Newton begins by (i) giving the 

attraction on an external particle P that lies on the polar axis AB of a homogenous oblate 

spheroid HOS (Book 1, Prop. 91, Corollary 2) and subsequently (ii) determines the ratio 

between the polar and equatorial attraction of a non-rotating oblate spheroid (Book 3, Prop. 

19). Unfortunately, Newton’s written treatment of (i) leaves “a long way from the conundrum-

like fashion in which the attraction is expressed in the corollary to its value at the pole, on the 

axis” (Chandrasekhar 2003, 387). In his geometrical approach to (i), Newton draws a conic 

section NKRM that is geometrically connected to HOS as follows: 



 

He then states that the attraction of HOS on P varies with the attraction of a sphere SAB that 

has a diameter of AB as follows: 

𝐹𝑃→𝐻𝑂𝑆 ∝ 𝐹𝑃→𝑆𝐴𝐵 [(
𝐴𝑆 × 𝐶𝑆2 − 𝑃𝑆 × 𝐾𝑀𝑅𝐾

𝑃𝑆2 + 𝐶𝑆2 − 𝐴𝑆2
) : (

𝐴𝑆3

3𝑃𝑆2
)] 

The above expression is the final result of the brief (~ one page) corollary that Newton cites 

in proposition 19 on the earth’s figure in book 3. He argues that it implies the following 

statement about the ratio between attraction at the pole of a homogenous oblate spheroid 

HOS with an equatorial-diameter-to-axis ratio of 100/101 and the attraction at the pole of a 

homogenous sphere with the spheroid’s equatorial axis as its diameter: 

𝐹
𝑃𝑜𝑙𝑒→𝐻𝑂𝑆 

100
101

= 𝐹
𝑃𝑜𝑙𝑒 𝐻𝑆 

100
100

× 126/125  

The gap between the convoluted and unproven expression for 𝐹𝑃→𝐻𝑂𝑆 and this solution for 

𝐹
𝑃𝑜𝑙𝑒→𝐻𝑂𝑆

100

101
 
motivated Chandrasekhar to argue that Newton had already developed a 

generalised algebraic theory for the attraction of any oblate spheroid, which he deliberately 

“withheld”.5 The gap might have also contributed its part to why many seventeenth-century 

 
5 These results are generally ascribed to MacLaurin. It might well be that Newton simply “got lucky” with a 
conjecture and did not yet have a proven a theorem analogous to MacLaurin’s. Derek Whiteside notes that 
Newton published on the analysis of conic integral that would be applicable for this problem in 1704, which is 
after the first edition of the Principia but before its second and third edition (Newton 1974, 226–27). To the best 
of my knowledge, there is no decisive historical evidence to decide the issue.  



physicists found this part of the Principia so incomprehensible, including notable figures like 

Daniel Bernoulli and Pierre Maupertuis (Terrall 2002, 56).  

Be it via conjecture or “withheld” algebraic solution, Newton did arrive at the above 

expression for the surface gravity at the pole of HOS. To solve the initial problem of 

determining the ratio between gravitational acceleration at the equator and poles of HOS, 

however, we also need to know about the surface gravity at the equator of HOS. Newton does 

not provide such an expression in book 1. Rather, he derived the ratio between the 

gravitational acceleration at the poles and the equator through a simple and powerful 

argument, which we find in proposition 19 of book 3. His reasoning exploits the fact the 

quantity of volume increase of constructing a homogenous oblate spheroid HOS with an 

ellipticity e from a homogenous sphere HS is equal to the quantity of volume decrease of 

constructing a homogenous prolate spheroid HPS with the inverted ellipticity. Hence: 

𝐹
𝐸𝑞𝑢𝑎𝑡𝑜𝑟→𝐻𝑂𝑆

100
101

=
1

2
(𝐹𝑃𝑜𝑙𝑒 𝐻𝑃𝑆 101/100 × 𝐹

𝐻𝑆 
101
101

) 

Newton notes the following ratios between the gravitational attraction at the poles and 

equator of the different figures that can be obtained in this manner:  

𝐹
𝐻𝑆

101
101

∶  𝐹
𝐸𝑞𝑢𝑎𝑡𝑜𝑟→𝐻𝑂𝑆

100
101

=  126/125.5 

𝐹
𝐻𝑆

100
100

∶ 𝐹
𝐻𝑆

101
101

= 100/101 

To solve the initial problem of determining the ratio between 𝐹
𝑃𝑜𝑙𝑒→𝐻𝑂𝑆

100

101

 and 

𝐹
𝐸𝑞𝑢𝑎𝑡𝑜𝑟→𝐻𝑂𝑆

100

101

, we now only need to multiply these two ratios with the previous results 

that Newton had conjectured (or derived via withheld analytic expression) for 

𝐹
𝑃𝑜𝑙𝑒→𝐻𝑂𝑆 

100

101

. Hence, he calculates: 

𝐹
𝑃𝑜𝑙𝑒→𝐻𝑂𝑆

100
101

∶  𝐹
𝐸𝑞𝑢𝑎𝑡𝑜𝑟→𝐻𝑂𝑆

100
101

=  
126 × 126 × 100

12𝑆 × 125.5 × 101
=

501

500
 

Therefore, 
501

500
 is the ratio between the gravitational accelerations at the equator and the pole 

of a homogenous oblate spheroid with an axis-diameter ratio of 
100

101
. 
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